Схемотехника радиоприемников. Практическое пособие.
Глава 14. Данные и факты
В этой главе содержится “всякая всячина”, т. е. самые общеупотребительные сведения и определения, необходимые для лучшей интерпретации всего изложенного выше.
Выбор критичных по ВЧ конструктивных элементов, особенно тех, которые определяют частотные свойства и качественный уровень схем, должен всегда основываться на самых последних данных производителей; коммерческий уровень выпускаемых компонентов постоянно изменяется. Что касается подробных и. строгих математических определений, то их можно найти в специальной литературе; их, конечно, можно использовать только на основе достаточно обширных инженерных и научных знаний.
14.1. Конденсаторы
Общий обзор различных типов, применений и свойств конденсаторов представлен в табл. 14.1. Для ВЧ-применений следует предпочесть пленочные и керамические конденсаторы (третий и четвертый горизонтальные блоки таблицы).
В табл. 14.2 объясняется способ маркировки пленочных и керамических конденсаторов и, кроме того, дается обзор керамических конденсаторов с нормированным температурным коэффициентом емкости (ТКЕ), используемых для температурной компенсации, Наконец, в табл. 14.3 указаны основные свойства подстроечных конденсаторов.
Добавим, что величина, обратная коэффициенту потерь tg d , есть не что иное, как коэффициент добротности Q; таким образом, Q = 1/tg d или tg d = 1/Q. Для расчета схем с конденсаторами используются следующие формулы (где С-емкость конденсатора):
14.2. Катушки
На рис. 14.1 представлена диаграмма для расчета бескаркасных катушек и катушек, намотанных на индуктивно нейтральных каркасах. Наивысшие значения добротности ненагруженной катушки получаются, когда отношение длины обмотки к ее диаметру приближенно равно 1:2. Для обеспечения оптимальной добротности экраны и другие металлические элементы следует располагать на достаточном расстоянии от катушки - во всяком случае не меньшем половины диаметра обмотки.
В табл. 14.4 собраны данные по наиболее широко используемым кольцевым сердечникам из карбонильного железа (известная ТТ-серия), а в табл. 14.5-соответствующая информация по ферритовым кольцевым сердечникам (RT-серия); эти конструктивные элементы выпускаются, например, фирмами Amidon и Micrometals, другие производители используют несколько иные обозначения. В табл. 14.6 приведены данные по максимальному числу витков обмоток, размещаемых на данных сердечниках.
Общая конструкция чашеобразных (горшковых) ферритовых сердечников показана на рис. 14.2, а в табл. 14.7 приведены основные характеристики наиболее употребимых сердечников этого типа. Они выпускаются, например, фирмами Ferroxcube, Siemens и Valvo. С помощью рис. 14.3 можно определить максимальное число витков для обмоток, размещаемых на чашеобразных сердечниках.
И наконец, в табл. 14.8 содержится вся основная информация о медных проводах различного типа.
Для высокодобротных колебательных контуров лучше всего подходят кольцевые сердечники из карбонильного железа. При использовании сердечников Т-37-хх, Т-50-хх и Т-68-хх можно, например, в спектральном диапазоне 1.. .50 МГц получить добротности (для ненагруженной катушки) 180, 240 и 280 соответственно. Ферритовые сердечники следует применять только в трансформаторах. В критических случаях рекомендуются предварительные измерения и исследования в отношении интермодуляционных характеристик катушек; ферритовые сердечники зачастую здесь “терпят” полную неудачу.
Для расчета схем, содержащих индуктивности, используются следующие формулы:
14.3. Аттенюаторы
Платы аттенюаторов выполняются в виде П- и Т-образных конфигураций, причем обычно нужны симметричные аттенюаторы с одинаковыми значениями входных и выходных сопротивлений. Номиналы их элементов в расчете на 50-омное значение входного и выходного сопротивлений и aj < 60 дБ приведены в табл. 14.9.
Для рассматриваемых в данной книге малосигнальных применений оптимальным является выбор металлопленочных резисторов с сопротивлениями 50... 250 Ом и мощностью рассеяния 0,3... 0,5 Вт. Реактивные составляющие элементов аттенюатора нужно учитывать, как правило, на частотах свыше 30 МГц. В высокочастотной области необходимо избегать применения аттенюаторов с затуханием > 20 дБ, а большие значения затухания следует обеспечивать с помощью каскадного соединения нескольких звеньев; сопротивления < 50 Ом и > 250 Ом рекомендуется “набирать” путем соединения (параллельного или последовательного соответственно) нескольких резисторов с номиналами (желательно различными), попадающими в область оптимальных значений.
Для расчета симметричных аттенюаторов можно использовать следующие формулы:
14.4. Способы модуляции ВЧ-сигналов и виды связи
В табл. 14.10 дается обзор трех способов модуляции ВЧ-сигналов-амплитудной, частотной и импульсной, а также различных способов передачи информации для каждого вида модуляции с их отличительными признаками. Наряду с этим указаны кодовые обозначения всех видов связи как в старой, но еще довольно часто встречающейся форме, так и согласно новой официальной схеме в соответствии с WARC'79.
14.5. Сокращения
Ниже приведена расшифровка английских сокращений, наиболее часто встречающихся в литературе по приемной технике, и некоторых немецких сокращений, используемых автором в данной книге.
14.6. ВЧ-номограмма
Приведенная на рис. 14.5 номограмма позволяет быстро оценить реактивные сопротивления конденсаторов и катушек в зависимости от частоты, а также значения резонансных частот контуров в зависимости от С и L.
Взаимосвязи между указанными параметрами описываются следующими формулами:
14.7. Относительные значения U, I и Р в дБ
Они представлены в табл. 14.11. При умножении относительных величин связанных друг с другом параметров их относительные значения, выраженные в дБ, складываются (с учетом знака).
Для количественных оценок можно использовать следующие формулы:
14.8. Взаимосвязи величин РдБм, РВт, иэфф/500м, идБмкВ, S
Диаграмма, представленная на рис. 14.6, позволяет быстро оценить “разномасштабные” количественные характеристики сигнала.
Для этого можно также использовать следующие точные формулы и определения:
В технике связи широко используются величины, выраженные в дБм: это не зависящая от импедансов и численно удобно выражаемая характеристика. Кроме того, если уровень сигнала задан в дБм, то к исходному значению этого уровня можно непосредственно прибавлять величину его относительного изменения в дБ, получая конечное значение уровня, также выраженное в дБм. Не нужно только забывать ставить знак + или — перед числом, определяющим уровень сигнала в дБм, для уровней выше и ниже 1 мВт соответственно.
Литература:
Blinchikoff H. J., Zverev A. I. Filtering in the Time and Frequency Domains, John Wiley and Sons, New York.
Carson A. High Frequency Amplifiers, John Wiley and Sons, New York.
Gerzelka G.E. Funkfernverkehrssysteme in Design und Schaltungstechnik, Franzis-Verlag, München.
Kovacs F. Hochfrequenzanwendungen von Halbleiter-Bauelementen, Franzis-Verlag, München.
Lancaster D. Das Aktiv-Filter-Kochbuch, IWT Verlag, Vaterstellen.
Nührmann D. Das große Werkbuch Eleklronik, Franzis-Verlag, München. - Das kleine Werkbuch Eleklronik, Franzis-Verlag, München.
Orr W.I. Radio Handbook, Howard and Sams, Indianapolis.
Osinga u. Maaskant. Handbuch der electronischen Meßgeräte, Franzis-Verlag, München.
Rint C. (Hrgs.) Handbuch für Hochfrequenz- und Eleklro-Techniker, 5 Bände, Pflaum-Verlag, München.
Rohde L. Digital PLL Frequency Synlhesizers, Prentice Hall, Englewood Cliffs.
Rose G. Grosse Elektronik-Formelsammlung, Franzis-Verlag, München.
Saal R. Handbook of Filter Design, Dr. A. Hüthig-Verlag, Heidelberg.
Zverev A. I. Handbook of Filter Synlhesis, John Wiley und Sons, New York.